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Abstract

Additive manufacturing (AM) has the potential to construct complex geometries through the
simple and highly repetitive process of layer-by-layer deposition. The process is repetitive and
fully automated, but the interactions between layers during deposition are tightly coupled. To
unravel these interactions the computational models of the manufacturing process are critically
needed. However, current state-of-the-art physics-based models are computationally demanding
and cannot be used for any realistic optimization. To address this challenge we build a surrogate
model (SM) of thermal profiles that significantly reduces the computational cost. We build this
model based on the observation that any AM process exhibits a high level of redundancy and
periodicity, making it an ideal problem for machine learning and surrogate modeling.

We introduce a unique geometry representation that is the key insight for this work. Rather
than directly using the part geometry, we parameterize the gcode for a given geometry into a set of
local distances from heat sources (laser, extruder) and sinks (cooling surfaces). This set of distances
is directly used as an input for the SM of thermal history. Since this set can be calculated a priori
from gcode, the explicit geometry considerations are largely factored out. Moreover, we leverage
the analytical solution to the moving heat source model to determine heat influence zone (HIZ).
The size of HIZ allows deciding a priori what should be the cardinality of the distance sets. We
show that for fused filament fabrication the size of HIZ is small; thus, the number of input variables
for the SM is small as well.

To build the SM, we first generate the thermal data using physics-based model and use it to
train an artificial neural network model. We train the SM and demonstrate its high predictive power
and low computational cost. Specifically, we demonstrate the capabilities of our model to construct
the thermal history for any point with acceptable accuracy (error below 5.0%) in almost real time
(0.034 s for any point in the part). With such performance, this model opens the possibility of
optimization as well as process planning, and in-situ monitoring for closed-loop control.
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1 Introduction

Additive manufacturing (AM) is an emerging technology that enables fabrication of 3D objects by
depositing layers of material, one after another. At this stage, a wide range of material classes can be
printed, such as plastic [4], metals [10, 33], food [28, 27], ceramics [11, 55, 60], and bio-materials [30].
Initially, AM was conceptualized as a tool for rapid prototyping and visualization, due to its ease of
building very complex geometries. The increased popularity of AM lead to increased interest in the
process dynamics, but its understanding is still mostly lacking, which is hampering the rational design
of the process and part properties.

A significant progress has been made to understand the process dynamics both on the modeling [2,
25, 45] and experimental front [1, 40, 52]. For example, relations between the process parameters,
thermal profile and the strength of the printed parts were established empirically [40]. Experiments
were also conducted to find the degree of consolidation of the deposited filaments [52]. The effects of the
printing parameters (such as deposition speed, road size, deposition pattern, deposition temperature,
and environment temperature) on the mesostructure of the printed parts were studied in details [58,
59, 53]. Although very insightful, the experimental investigations are expensive and quite often have
limited scope. For example, once the layer is buried under the next layer, the physical access to
measure the temperature is mostly limited. This limitation is not present in case of modeling, where
high spatial and temporal resolution is theoretically possible. Mathematical models can range from
examining the behavior of the polymers during the bonding process of the deposited filaments at
the micrometer scale [4] to estimating the deformation in the printed part at centimeter scale [59].
Computational model can also be used to estimate the degree of consolidation in printed polymers [46].
However, the main challenges with computational models are strongly tied to the high computational
cost, large memory requirements, and long computing time required to predict the deposition process.
Interestingly, in the current state, it is faster to print and test the part for properties than to analyze
the deposition process through simulations.

To address the computational challenge numerous approaches have been explored including analytical
models [49, 50], adaptive meshing [38], and domain decomposition [5]. Patil et al. [41] created an
efficient finite element based model utilizing multi-scale simulation with adaptive mesh refinement and
de-refinement to reduce computational cost without affecting the accuracy of the results. Neverthe-
less, these methods still require high computational resources that are beyond any optimization of a
large part. In [49], Steuben et al. formulated an analytical model capable of analyzing the thermal
behavior of a metal printing process at a lower computational cost. The analytical solutions were used
to ensemble time history using "method of images" that were additionally enriched by several func-
tions to capture the high non-linearity in the geometries and material properties. A large reduction
in computational time was reported for a selected geometry. However, that approach still requires
specific enrichment functions for many factors (e.g., the latent heat from melting and resolidification).
Moreover, compensation functions must be tuned for specific geometries.

Another model that reported a high reduction in computational time is work by Stockman et al. [50]. A
three dimensional finite difference based thermal model has been developed for AM processes to reduce
the computation time by leveraging coarse meshing in both time and space along with simplifying
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assumptions about the underlying processes. The model was tested on a print size with 31 layers, each
layer being 127 mm long with 80 roads. The computation time was 22 minutes which is still high. Neiva
et al. [34] implemented a finite element framework that was parallelized by domain decomposition and
adaptive meshing and led to reduction in the computational cost. All these models surpass traditional
modeling in speed while maintaining a certain degree of accuracy, but do not enable in-situ control or
process optimization.

In this paper, we present another approach that aims at replacing the computational model of layer-by-
layer deposition with its statistical surrogate, also known as a Surrogate Model (SM) [42, 36]. As the
name suggests, the surrogate model works as the computationally inexpensive alternative of a relatively
more expensive physics based model. SM is commonly used in aerospace engineering [26, 19] and
biological sciences [17]. In the area of AM, SM has been explored only with limited capacity and scope.
For example, a Gaussian process-based surrogate model has been built for Laser Power-Bed fusion
process [54]. The SM maps process parameters (laser power, beam size, and scan speed) to the selected
feature of the deposition (i.e., depth of the melt pool). The model was trained from limited experimental
data and predicted the melt pool depth with acceptable accuracy. Another surrogate model has been
built for a bottom-up stereolithography process to map pull-up separation stress to shape of layers [56].
Specifically, the model predicts the separation stress for different geometries without performing a
costly finite element simulations. The model allows choosing the process parameter that ensures the
processing of the part rather than predicting the coupled effect of the layer by layer deposition.

The work of Mozaffar et al. [32] is the most relevant work for this paper, as it focuses on predicting
temperature profiles for various geometries. Mozaffar et al. proposed a data driven approach to predict
the thermal history in a direct energy deposition process using recurrent neural networks. The model
mapped the position of a point on the printing surface, time of deposition, distance of the closest cooling
surface, and laser parameters with the thermal output (i.e., temperature profile). Authors reported
high accuracy of the predicted thermal profiles for a longer period of printing than the training and
dissimilar geometry. Although the model shows high competency, it required a large data set (250,000
points) to train the model. Generating such large quantities of data is time-consuming. The model is
also based on two hand picked geometrical features (distance from nearest boundary and layer height),
which may limits its generalizability to other more complex geometries.

Finally, Francis J. [13] predicted distortion of a laser-based AM process through deep learning. Similar
to the previous model, a large number of images (21,818, size: 40GB) captured from the experiments
were used to train the convolutional and artificial neural network. Moreover, that model mostly focused
on mapping process variables to part properties while omitting the specific interactions occurring during
the deposition process, including the effect of the geometry. Consequently, these models have limited
capabilities to perform a rational design of the deposition process or closed-loop control.

In this paper, we address this gap by devising the SM capable of predicting the deposition history for
the entire part geometries. Rather than focusing on one quantity of interest, e.g., melt pool depth, we
aim at predicting the entire thermal profile for any point in the part. In particular, we build our SM
by leveraging the high level of redundancy, repeatability, and periodicity that exists in AM processes.
We hypothesize that if the pattern exists in the deposition behavior, it can be captured using machine
learning, and subsequently used to predict the behavior of another part. We build the model in two
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Figure 1: Overview of steps involved in any AM process, and link with physics-based prediction and
data-driven approach (presented in this paper).

steps. First use the physics-based numerical model to generate the data required to train the surrogate
model. In the second step, we leverage the neural network to build SM of thermal behavior. We
showcase the model by predicting the thermal behavior of Fused Filament Fabrication (FFF) process.
We used 26,000 data points (5.5 MB) for training the surrogate model. Our model is capable of
predicting the thermal behavior with high accuracy (error below 5%) with almost real-time response
(0.036 s per point) for extrapolative and interpolative cases. Our SM opens the avenue for in-situ
process control, process optimization and materials design for processing process.

2 Unique characteristics of additive manufacturing

Additive Manufacturing processes have two unique characteristics: additive and repetitive character.
Any AM process follows a generic procedure to build a part, as depicted in Figure 1. First, the CAD
model of the 3D part is designed. Next, the CAD model is partitioned into roads and layers by a
slicing software. In this process, the CAD model is translated into the set of simple and repetitive
instructions encoded in the gcode file that has been generated for a specific part. As a consequence of
this step, through the slicing process, the geometry of the part is effectively factored out.

On the modeling front, the traditional discrete models (e.g., FEM) follow a very similar workflow.
The CAD model is discretized into the computational mesh. During the simulations, the mesh is
gradually activated mimicking gcode instructions along with the corresponding system of equations
being assembled and solved. The inevitable consequence of such setup is the additive computational
cost that increases as the deposition proceeds. The total run-time depends on the size of the part, but
in general, it ranges from hours to even days. For example, Zhang et al. [59] conducted the thermo-
dynamic simulations for a specimen of size 40× 10× 1.016 mm composed of 1600 discrete depositions.
In total, authors reported that the simulation required 30 ∼ 35 hours using a 2.8 GHz processor with
2GB memory.
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Figure 2: Cyclic reheating in the temperature profile at an interior point (A). At time t0d the point
is deposited and at tid the ith reheating cycle begins due to an influencing deposition as shown in the
schematic diagrams above them.

The additive nature of the traditional physics-based models mimics well the additive nature of the
deposition process. However, the ensemble of the part geometry still remains the integral element of
these models. With such a problem setup, it is challenging to exploit the repetitive nature of the
deposition process. Consequently, most of the calculations in traditional methodology may become
redundant. In this work, we formulate the SM that does not rely explicitly on the geometry of the
entire part. Below we include the critical features that guided the formulation of our SM:
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Figure 3: Pattern in the temperature profile with respect to print size at an interior point A (Position:
top of 1st layer and 1st road).

• Cyclic reheating: Cyclic reheating is a signature of the road-wise and layer-wise heat influx
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from the depositions. The cyclic reheating in the temperature profile is typical for any thermally
driven AM process and is observed for any point of the part to a varying degree. Example profiles
for selected points of the printed part are depicted in Figure 2 and 3. The cyclic nature with
reheating periods of decaying amplitude is the most conspicuous characteristic of temperature
profiles.

• Reheating cycles can be determined directly from gcode: Reoccurring depositions cause
cyclic behavior in the temperature profiles. Each reheating period in the temperature profile
corresponds to the energy input from the deposition of adjacent roads and layers. Figure 2
designates the deposition time of a heated layer by vertical dashed lines. More importantly, the
reheating periods can be pre-computed directly from the gcode (see a series of tid in Figure 2).

• The amplitude of the reheating periods depends on the distances: During the first few
cycles, each of depositions from the nearest neighborhood initiates a rise in the temperature.
Figure 2 shows the trend of the temperature profile for several reheating periods. In this case,
the reheating cycles exhibit a decaying amplitude and an increasing time lag between consecutive
peaks. Both the amplitude decay and the time lag are consequences of increasing distance from
the top surface where heat is applied (from the deposition, or laser). For this process, the number
of reheating cycles is finite and small, which is related to the heat transfer resistance of the part
and is a function of material properties as well as the geometry of the part.

• The cyclic reheating pattern persists for various parts: Figure 3 depicts the temperature
profiles of several parts. The temperature profiles have been extracted from simulations of the
cuboid-shaped parts at the same location (A), but with increasing part length (as marked in
the legend). The increase in part length results in longer time gaps between road and layer
depositions that led to the following changes in the profiles:

– Longer reheating period, due to increased relative deposition time of each layer.

– Higher temperature amplitude of reheating cycles, due to increased deposition time of each
layer and more cooling from top surfaces.

– Change in the slope of the cooling curve, due to increased distance from cooling surfaces.

– The average temperature is higher for shorter parts due to a shorter time gap between
individual road and layer depositions and associated heat influx from the heat source.

Nevertheless, the overall temperature profiles remain highly similar. Hence, if the pattern can
be captured from simulations of some parts, the temperature can be predicted for other parts as
well.

• Redundancy exists in the temperature profiles: Figure 4 depicts the temperature profiles
for a series of points distributed along a given road. The points are selected from the middle part
of the print, away from the boundaries. Note that the temperature profiles are almost identical in
the first few reheating cycles. This is an example of redundancy where points exposed to similar
thermal conditions have the same cooling pattern.

• Symmetry exists in the deposition: Another example of redundancy in the temperature
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Figure 4: Symmetry in temperature profiles across the print direction. The left panel overlays the
temperature profiles of the points along a line perpendicular to the print direction. The line, on which
the points are situated, is shown in the schematic diagram in red. The right panels depict separate
plots for points on each half of the line. (View in color)

profiles is related to the symmetry in the deposition. Figure 4 depicts the temperature profiles
color-coded by the distance along the road. Note that temperature profiles for points close to
one end of the road are mirrored with the temperature profile for points from the opposite end
of the road. Hence, if symmetry exists in the deposition pattern (not necessarily in geometry),
the temperature profiles resemble it.

The occurrence of the above patterns is a direct consequence of an interplay between three heat transfer
processes: (i) heat influx into the part from the new depositions at a higher temperature, (ii) heat
dissipation from the part into the surroundings due to the convection and radiation from free surfaces,
and (iii) heat conduction within the part. Moreover, although the part is three dimensional, the
deposition process occurs along one dimension. Hence, we observe that the first order effects from
each heat transfer processes can be captured using a set of distances from each heat sink and heat
sources. The number of distances required to capture these effects depends on the material used and
the process analyzed. In some cases, the number of distances may be relatively high. However, in many
cases it is manageable. For FFF, we report that the total number of reheating cycles is as small as four
layers and hence manageable. More importantly, we show that it can be determined a priori through
the calculation of the ‘heat influence zone’ (HIZ). These are the significant observations for the SM
formulated in this paper. There are two additional elements critical to our SM. First of all, we propose
to use gcode for the decomposition of the temperature profile. Moreover, we leverage neural networks
to quantify the first order (and higher orders) effects as a function of the distance sets determined for
each point of the part.

In the next section, we describe three main components of the SM. We first provide a basic intro-
duction to surrogate modeling. Next, we explain the decomposition of temperature profile and the
parametrization of the geometry. We also articulate the concept and importance of HIZ for reducing
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the complexity of the SM.

3 Surrogate model

‘A Surrogate’ is a substitute or replacement, which is developed to perform the tasks of the entity it
replaces. In the engineering context, a surrogate model (SM) is a statistical model [36, 47], which is
designed to produce the response equivalent to the original model at a fraction of the cost without
sacrificing accuracy. The significant reduction in the cost is a direct consequence of replacing the
underlying governing equation with a function between the selected output and the selected input
of the original model. Formally, consider a physics-based model (e.g., numerical simulation) to be a
function:

y = f(x) (1)

where y is the output of the model and x is an array of the input parameters. The corresponding SM
is of the form:

ȳ = f̄(x̄), x̄ ∈ x (2)

where ȳ is the output of the SM for input parameters x̄ and f̄ represents the SM. To build SM, f̄
must be found by solving an inverse problem [14, 9]. In essence, the focus of SM is first to generate
data using the original model, and then to determine the function. Such a model can provide good
predictive capabilities at the cost of limiting the explanation for the predicted behavior.

There is no unique way of constructing f̄ . The most popular SMs can be classified into following
families: response surface modeling [20], neural networks [15], kriging [23], and support vector ma-
chines [7, 8]. Regardless of the method chosen, designing and building an SM involves four steps [12]:

1. Selection of input and output variables

2. Design of experiments to generate training data

3. Training the SM

4. Validation and testing

The choice of input and output variables delineates the complexity of the model, the number of
variables in the model, as well as the number of samples required for training. Such a choice is
problem dependent. In the case of this work, the information about the geometry of the part is the
desired input, while temperature profile (T (t)) is the desired output.

In this work, for any point in the part, we extract a set of distances from cooling surfaces and heat
sources using the gcode. We use the concept of HIZ to narrow down the key distances and use them as
selected features for the SM. Specifically, we use a small set of distances from heat sources and sinks
within the HIZ as the input to the SM model.

The temperature profile is selected as the output variables for our SM. To further simplify the training
process, we decompose the temperature profile into reheating periods based on the gcode generated for
a given printed part. The motivation for the extra step is grounded in the interplay between different
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heat transfer modes active during different reheating periods. During the first period, the temperature
cooling profile is affected by a small set of distances from cooling surfaces. For the subsequent periods,
the set of distances and their importance changes as more layers are added. Such decomposition allows
reduction of the number of input variables and acceleration of the training process of SM.

3.1 Temperature decomposition using gcode

For all points, we transform the temperature profiles from the global time frame (t) to a local time
frame (t̄) that starts at the deposition time (t0d) of the point. The origin of the local time frame is
readily available from the gcode. In this sense, the local time frame facilitates the temperature profile
alignment to the local deposition. In this local time frame, the deposition time is at t̄ = 0 for all points.

In Figure 5, the first row depicts the ensemble of temperature profiles for a series of points selected
from different parts. Specifically, the first two panels of this figure depict temperature profiles: in the
global time frame (t) and in local time frames (t̄), respectively. Interestingly, when translated into the
local time frame, the pattern in the temperature profiles becomes more prominent.

Next, we decompose the temperature profiles into reheating periods based on the time of subsequent
depositions occurring at tid. The second row of Figure 5 depicts the example division of individual curves
into constituting five periods (dashed vertical lines added for guidance). Each period corresponds to
the time between depositions of the influencing road or layer in the HIZ (e.g., top layer deposition).
Such time division into constituting periods can be performed for any point of the printed part directly
from the gcode. The temperature profiles in Figure 5 are extracted from the results of a physics-based
simulation and demonstrate that proposed decomposition captures the reheating periods accurately.

Formally, the decomposition of the temperature profile T (t) can be expressed as:

T̄ij(t̄) =



(
H

(
t− t

N i
j

d

)
−H

(
t− t

N i+1
j

d

))
Tj (t)

∀i ∈ [0, 1, 2, ..., n− 1](
H

(
t− t

N i
j

d

)
−H

(
t− tend

))
Tj (t)

i = n

(3)

where Tj(t) is the temperature profile at the jth point, H(·) is the Heaviside function, and T̄ij(t̄) is
the ith segment of that temperature profile. This is shown in panel (b) of Figure 5. Index N i

j is the
ith influencing deposition on the jth point. The last period of the temperature profile extends to the

end of the simulation(tend). The time for subsequent deposition t
N i+1
j

d and the number of influencing
deposition are location specific and depend on the part geometry, deposition pattern, and deposition
speed.

The decomposed temperature profiles are mapped into an m dimensional space by fitting them with a
curve. The type of the fitting curve is chosen based on the thermal behavior and ease of representation.
The first period exhibits exponential cooling and hence an exponential function is more suitable. All
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Figure 5: Basic steps involved in decomposition of temperature profile and curve parametrization. (a)
Temperature profiles, (b) slicing and fitting, (c) decomposed temperature profiles, and (d) training.
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other periods follow an exponential heating and then cooling pattern. In principle, all the periods
can be represented using an exponential function, but polynomial functions exhibit better training
performance for some periods. We attribute the poor performance of exponential functions to the
small time lag between the deposition time used for temperature decomposition and the time of actual
initiation of the reheating. The time lag is small and can be estimated or trained with more data, but
for the process considered in this work, it has a small effect on the overall thermal behavior, while
significantly affecting the training performance. The temperature profiles are fitted as follows:

T̄ij(t̄) =

{
ai1e

ai2t + ai3e
ai4t ∀i ≤ 2∑3

k=0 â
i
kt
k ∀i > 2

(4)

where aik and â
i
k are the k

th coefficient of the fitted curve representing the ith period of the temperature
profile. Regardless of the choice of the fitting function, the SM seeks to map the regression coefficients
for the corresponding basis functions with the set of local distances from heat sinks (cooling surfaces)
and heat sources (moving heat source and deposition of new materials).

The temperature is decomposed into n periods. The number of periods, n, is dependent on the total
number of influential depositions that are determined using HIZ – discussed in the Appendix. Example
time decomposition is shown in Figure 5 (third row). Note that the number of reheating periods for
these profiles is small. The temperature profiles have at most five periods where some of them exhibit
clear cooling behavior and the rest of them show reheating behavior.

3.2 Feature selection

The efficiency of the training process of an SM and its performance heavily depends on the selected
feature set. A well-designed set of features leads to faster learning and more accurate predictions.

The feature set can be constructed from the raw data through statistical methods (e.g., wrapper
methods [22], filter methods [16]). These methods do not consider the underlying physical process,
and hence, are useful when the process is complex or unknown. In this work, we adopt a different
approach. We take the physical characteristics of the deposition process to guide the feature selection
for the SM.

Features directly linked to heat influence zone

We define a zone over which any heated deposition has a significant effect. The zone is dependent
on the material properties and the process parameters. For a given material and a specific printing
process setup, it is possible to identify the maximum extent of the zone; that we call the Heat Influ-
ence Zone (HIZ). It is essentially the maximum distance from a heat source/sink where a minimum
observable thermal change occurs. The size of HIZ guides the design of input parameters (features)
for the SM. In this sense, the size of HIZ is critical to parameterize the coefficients of the curves for
individual reheating periods. HIZ corresponds to the spatial region where the first order effects are
dominant, and distances within this zone must be included as an input for the SM. The contributions
from heat sources/sinks outside of this zone may be of less influence and hence can be ignored.
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To estimate the size of HIZ, we leverage the analytical solution to the transient heat equation with a
point source on a semi-infinite body [35]. Figure 6 depicts the characteristic feature of HIZ determi-
nation, while details of the analytical solution are given in the Appendix of this paper. The analytical
model is leveraged to determine the temperature profile due to deposition of a heated layer. As the
layer is deposited the temperature in the neighborhood increases. The heat from the deposited layer
dissipates through the system and increases the temperature of the specimen. Over time, the heat
traverses to the lower layers while the top layers cool down, as shown in the figure. Figure 6 depicts
the time evolution of temperature change (∆T = T −T0) as a function of distance from the heat source
at the center of the sample. The results are obtained using the solution from Equation 17. The tem-
perature is computed for a part with height corresponding to twenty layers at an initial temperature of
T0 = 25 ℃. One heated layer with 20 roads (each road 4mm×0.2mm) is deposited over twenty layers
at an initial temperature of 210 ℃. The cooling effect due to convection and radiation is ignored. The
choice on the geometry allows a conservative assessment of the thermal behavior of the representative
points in the printed part and thus, leads to a conservative estimate of the HIZ.

(a) ABS Plastic (b) CF-PLA Plastic

Figure 6: Heat penetration for (a) ABS and (b) Carbon fiber PLA due to a heated deposition.

Figure 6 depicts the temperature evolution for two materials: ABS and CF-PLA. In each case, the
HIZ is estimated and marked based on the following criteria. For a point to be considered inside the
HIZ, a minimum increment in temperature must be observed. This threshold considered in this work
is set as 10% of the glass temperature (105 ℃) of ABS. Such criteria mean that for a point to be in the
HIZ of a deposition the rise in temperature must be at least 10.5 ℃. The maximum depth at which
the minimum temperature change by 10.5 ℃ is approximately 0.8 mm for ABS plastics (Figure 6, left
panel). For CF-PLA (right panel) it is approximately the same. The major difference between these
two materials lies in the time when the heat penetrates the material. For ABS, it is at approximately 14
s and for CF-PLA it is at approximately 0.03s. The shorter time occurs due to the higher conductivity
of the carbon fibers in CF-PLA.

The estimation of the HIZ translates to approximately four layers for the ABS in FFF printing process.
Hence, for any point in the printed part, the maximum number of layers for which a significant
temperature is expected is four, assuming the filament thickness to be 0.2 mm. This estimation agrees
well with the representative cooling curves in Figure 2. The temperature profile is characterized by
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four cyclic reheating periods. Moreover, it remains unaffected by the subsequent depositions beyond
the fourth layer. Hence, it is concluded that any deposition beyond the estimated size of HIZ has a
negligible effect on the temperature profile.

Once the size of HIZ is estimated, for any point of interest in the part, a set of distances from cooling
surfaces and heat depositions is determined. Rather than using the spatial coordinates (x, y, z) of
a given point, their contribution towards the thermal properties is quantified by the set of relative
distances (dkc ) from the cooling surfaces. The set of distances is guided by the gcode and HIZ. If the
surface is within the HIZ, the corresponding distance is taken as an input to the SM. In practice, three
types of information are determined: (i) the deposition time of the influencing depositions (tid), (ii) the
corresponding distance (hid) to the heat source, and (iii) the distance (dkc ) from the cooling surfaces.
The set of distances is location specific.

3.3 Output construction

With the input variables (features) defined, we now introduce the protocol for output construction. In
general, for any point of the part, we seek to determine the map between the input parameters (features)
and the temperature profile. The temperature profiles are considered as a function of the two types
of features: (i) features defining the part geometry (dkc , A

k
c ) and (ii) the features related to deposition

pattern (hid, t
i
d):

T = f(dkc , A
k
c , h

i
d, t

i
d, t). (5)

The final step is to reconstruct the full temperature profile from the constituting segments while
ensuring continuity:

Tj(t̄) =
n−1∑
i=0

(
H
(
t− tid

)
−H

(
t− ti+1

d

))
Tij
(
t̄
)

+
(
H
(
t− tn−1d

)
−H

(
t− tgj

))
Tnj
(
t̄
)

(6)

where t is the time, Tij(t̄) is the temperature profile of the j-th point at the i-th period, and t̄id and
t̄i+1
d are the time of i-th and (i+ 1)-th nearest influencing deposition, respectively. Time tdj is the time
of deposition of the jth node and tgj is the end time of modeling where consolidation stops. It defined
as,

tgj = argmax
t

(Tj(t) > Tg) (7)

where Tg is the glass temperature of the material.

3.4 Training

The training of the SM is done using a set of artificial neural networks. Each period of the temperature
profile is trained by a separate neural network. It is motivated by the dynamics of the deposition
process and the associated change in the set of distances from heat sinks and sources. Moreover, by
decomposing the temperature profile, less data is required for training.
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For the same reason, we introduce three categories of points: top points (on the top surface of the
road), side points (on the side surface) and corner points. Each category is trained separately as they
exhibit different cooling regime. The points in the top of the deposited material are affected more by
the deposition of top layers, while the points on the side are more influenced by the road right next to
it. The points in the corner have characteristics of both. A schematic for the SM with the structure
of the neural network is shown in Figure 7.

We notice that the general trends should be captured without introducing these categories; however,
it would require a much larger data set for training. In principle, it is possible to generate data for any
resolution; however, the required time for data generation and training prohibits a significant increase
in the resolution.

In summary, for HIZ of four layers, the temperature profile is divided into five periods. With three
categories of data points, in total fifteen neural networks are constructed and trained to predict the
temperature profile. This type of data division and model formulation is known as context-aware
learning [6].
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Figure 7: Structure of the surrogate model.
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4 Results

We choose the fused filament fabrication process to showcase the capabilities of the surrogate model.
FFF is an additive manufacturing process that fabricates prototypes by depositing layers of semi-molten
thermoplastics. The material is deposited through a heated extruder that is controlled by a gantry
machine. The extruded thermoplastic cools down and fuses with the surrounding material at the high
temperature. The formation of the bond between two thermoplastic surfaces at a high temperature
is induced by polymer diffusion. The details of the physical, mathematical, and computational model
are provided in details in the Appendix.

Step: Heating  Frame: 0  

Total Time: 4.999951

Step: Heating  Frame: 3  

Total Time: 5.999108

Step: Heating  Frame: 0  

Total Time: 6.999931

Time : 5s T ime : 6s T ime : 7s

Layer 7 Layer 8 Layer 9 Temperature (K)

        503.1

        454.6

        406.0

        357.4

Time (s)

Figure 8: Temperature distribution in the gradual deposition process at selected point in time.

4.1 Data generation

As in any data-driven approach, the accuracy of SM is mostly dependent on the data used to build that
model. In particular, the sampling of the input space directly affects the accuracy of the model. The
data generated for the training step must cover the domain of interest uniformly. Standard sampling
strategies include methods such as Latin hypercube sampling [37, 57, 39, 24, 48, 21], or orthogonal
arrays being part of design of experiments [29, 31]. These methods can be directly applied to problems
where input variables are independent, which is not the case for this work. In this work, sampling of
the SM input space is directly connected with the part geometry.

For simplicity, we choose a cuboid shape as shown in Figure 8 in the Appendix. The aim of this work
is to prove the concept, and we first focus on the effect of size rather than the geometry of the part.
For that reason, we establish the SM which can predict the temperature profile for different sizes of a
single shaped geometry.

In total, eleven parts are considered. The width and the height of the cuboid are kept constant at
2.4 mm and the length is varied from 2 mm to 6 mm (three times increment). Results from FEM
are processed to extract the temperature profiles. The generated data is divided into two categories:
training data set and testing data set. The training data set contains the temperature profiles for the
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Figure 9: Workflow of surrogate model construction with the approximated time and storage required
to complete individual steps.

parts with mid-range of length: 3.2, 3.6, 4.4, 4.8, and 5.2 mm, as described in Table 1. All together
the training data set consists of 26,000 data points for surface (top and side) nodes, each point being
one temperature profile (T (t)). The testing data set contains the temperature profiles for part-lengths:
2.0, 2.4, 2.8, 4.0, 5.6, and 6.0 mm. The part dimensions considered in this work are consistent with
many state-of-the-art computational models [58, 53]. The largest part (L = 6.0 mm) consists of 12
layers (0.2 mm thick), each layer is made up of 15 roads (0.4 mm wide) of 2.4 mm length. Each road
is divided into 24 unit depositions. Hence, the part is made up of 4320 discrete depositions.

This choice of the data-set division allows testing the SM in two scenarios: interpolation and extrapo-
lation. In the interpolation scenario, we aim to test the robustness of SM to predict the temperature
profile for the part that is within the range of length used in training (3.2-5.2 mm). Specifically, we
choose the part of the length of 4.0 mm. In the extrapolation scenario, we choose data sets that are
generated outside the length range used in training. Specifically, we choose the part length of 2.0,
2.4, 2.8, 5.6, and 6.0 mm. These parts are at both ends of the length spectrum creating an excellent
opportunity to evaluate the robustness of the SM.

The physics-based simulations are performed using ABAQUS®. The details regarding the simulation
are summarized in the Appendix. The FE simulations and data extraction were conducted on a 12
CPU system (Intel® Xeon® E5645 @2.40 GHz with 48GB RAM).

4.2 Training and validation

The neural networks comprising the SM are trained using the data from the FEM simulations. Figure 9
describes the work-flow to train the SM. The control parameters (optimization function, number of
hidden layers, convergence criteria) of these neural networks are selected such that the error in the
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output is minimized. The SM testing is done on a single CPU (Intel® Xeon® E5645 @2.40 GHz with
48GB RAM) in serial.

The output of the SM is a temperature field which is divided and fitted according to section 3.3. The
coefficients of the fitted temperature profiles are the output variables of the neural network. Following
are the details of the neural network parameters:

• Type: Single layer shallow NN (Figure 7).

• Training Function: Bayesian regularization with back-propagation.

• Number of hidden nodes: Varies (6− 40)

• Target training error: 10−5

The parameters are set to accommodate faster convergence in training and to avoid over-fitting. The
training function determines the regularization factor to reduce over-fitting. A large regularization
factor may learn more generalized trend but may cause underfitting. A lower value of the regularization
factor may lead to over-fitting causing the model to behave poorly for new data sets. From Figure 10,
we can observe that the training of the NN has no trace of over-fitting as the testing error is following
the trend of the training error.

(a) (b)

Figure 10: Performance plot of the neural networks for section 1 and section 3 of the temperature
profile. The ‘Goal’ is to achieve a training error less than or equal to 10−5.

4.3 Testing

The aim for constructing the SM, described in the Section 3 and Section 4.2, is to predict the thermal
behavior of the printed parts. As the first step to verify the robustness, we evaluate its ability to
predict the thermal profiles for a few testing data sets.

We present the comparison between the FEM and SM by focusing on two essential qualities of com-
putational models: accuracy and speed. Accuracy provides the quantitative measure at which the
SM can predict the thermal outcome compared to the FEM (Figure 11, 12, 13, 14, 15, and 16). We
assess the accuracy of the SM by comparing two aspects: temperature profile in time and temperature
distribution in space. Firstly, we present the error of SM for a few selected points in space (Figure 11
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and 12). Next, we present the spatial accuracy of the SM at a few selected points in time (Figure 13,
14, 15, and 16). We report the errors for both extrapolation (Figure 15 and 16) and interpolation
scenario (Figure 13 and 14). Finally, in Figure 17 we report the error for all points in the parts. We
close this section by comparing the computational time of both models in Table 1 as computational
speed is the major motivation for creating the SM.

(a) (b)

(c) (d)

Figure 11: Temperature profiles for selected points predicted using FEM and SM for the interpolation
scenario (L = 4 mm). Note: The representative points are chosen at different layers, (a) layer 2,
(b) layer 4, (c) layer 5, and (d) layer 6.

Figure 11 depicts the temperature profiles (T (t)) for a few selected points. These results correspond to
the interpolation scenario (print of length 4 mm). Each panel depicts T (t) from FEM and overlays
it with the same from the SM. The four points are representative of different layers in the printed part.
In each case, the temperature profiles show the characteristic cyclic reheating. The results show good
correspondence between the temperature profile from the SM and that from the FEM. In each case,
the error in the temperature prediction is below 2%. The representative points in Figure 11 have error
of 0.28, 0.22, 0.32, and 0.16%, respectively. The error is quantified by the Normalized Root Mean
Square Error (NRMSE) defined as:

NRMSE =

(
1

tend

∫ tend

0

(
TFEM (t)− TSM (t)

TFEM (t)

)2

dt

)1/2

× 100 % (8)

There are a few characteristics worth articulating:
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• The deviation of the SM predictions from the FE profiles is low in all sections.

• The peaks obtained by the SM lines up with that of FEM with satisfactory accuracy.

• The SM is designed to only maintain C0 continuity in time at the intersection of each section. To
ensure this temporal continuity, the start of each cycle is superposed with the end of the previous
one, which may potentially cause error propagation. However, its effect is minimal.

Similar to Figure 11, Figure 12 shows the temperature profiles of the extrapolating length (5.6
mm) for four representative points at different layers. The results from the SM show acceptable
correspondence with the results from the FEM. The error found at these points are 0.57, 0.30, 0.38,
and 0.64%, respectively. The associated error is slightly higher than that of interpolation scenario.
However, it is well within the tolerable limit (5%). Moreover, in this scenario, the print size is longer
than the parts used for the SM training. In particular, the length is increased by 7%, but the measured
error is still below 2%. We further increase the print length up to 15% (L = 6 mm) and the mean
error was found to be 1.84%. Although further increment of print length is possible, it is restricted
by the substantial time and storage space required by the FEM simulation. Nevertheless, our results
clearly demonstrate the robustness for both interpolation and extrapolation scenario of the SM.

(a) (b)

(c) (d)

Figure 12: Surrogate model predictions and FE simulation results for the extrapolation sce-
nario (L = 5.6 mm). Note: The representative points are chosen at different layers, (a) layer 2,
(b) layer 3, (c) layer 4, and (d) layer 6.

We also compare the results for the spatial temperature distribution at selected points in time. Fig-
ure 13 depicts the comparison of FEM and SM for the interpolation scenario (L = 4.0 mm). The
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temperature distribution on the layer 5 from the FEM in panels (a, b, c, d) and from the SM in the
panels (e, f, g, h) is compared. The relative error is also presented in the panels (i, j, k, l) of this
figure. In the first row of each column, a schematic diagram of the printed part is shown for each the
corresponding time. In these diagrams, the cross-section of the layer in focus (layer 5) is marked by
arrows. The second row of the figure presents the temperature distribution from the FE simulation.
The third row depicts the temperature distribution from the SM and the last row provides the relative
error distribution. Each column represents a different time in the printing process. The first column
results from the time t1 when the fifth layer is completely deposited. From the temperature distribu-
tions, we observe a gradient in temperature along the breadth (lower temperature near the bottom
and higher temperature near the top) forms. As the roads are being deposited along the breadth,
as shown in Figure 4, higher temperature and higher temperature gradients form. In both cases, the
depositions near the start of length have a lower temperature than the relatively recent depositions
near the end, since they get more time to cool down. Also, we see a higher temperature near the center
and the boundaries are at a lower temperature. The effect of higher surface cooling at the boundaries
causes this behavior. The set of temperature distribution illustrates these key characteristics of ther-
mal processes occurring during layer by layer deposition. Our SM is capturing well all these transient
characteristics while mimicking results from FEM with good accuracy.

Similar observations are made for second and third column of the figure that represents the time t2.
At this point, the layer 6 is completely deposited over layer 5. The newly deposited layer causes
a temperature rise in the bottom layer. As mentioned earlier, due to the effects of convection and
radiation on the boundaries, a higher temperature is retained at the center. In this time frame, all the
points on the surface are at the first reheating cycle of their temperature profiles. In the third column
of Figure 13, the next layer is half deposited and it causes a rise in the left half of the print, which is
apparent in both FEM and SM distributions. Hence the left half of the print is in the second reheating
cycle of their thermal profiles. At the last column of Figure 13, another layer is half deposited, but
due to its higher distance from layer 5, the reheating effect is less pronounced.

All these results show good conformity between SM and the FEM. The maximum error is found to
be less than 1.5%. The error distribution is random as a general nature of the ANN used in the SM.
There are a few notable observations as follows:

• The SM predicts the spatial pattern in the thermal behavior that is in line with the finite element
model.

• Although no provisions are made for spatial continuity, the discontinuity is well within tolerable
limit.

Figure 14, depicts a temperature distribution comparison for layer 7 of the same interpolation
case (L = 4.0 mm). Here, at time t1 the layer 7 is deposited completely and at t2 layer 8 is completely
deposited over it. Similar trend in temperature distribution are observed for layer 5 in Figure 13. Since
this layer is further from the base, the cooling effect of the base is significantly reduced and hence the
overall temperature is higher. These results further assert the predictive ability of the SM with respect
to the interpolation scenario.

Similar observations are drawn from other test parts. In Figure 15 and 16, we present the spatial
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distribution of temperature of the extrapolation scenarios (L = 5.6 mm). The layout of the panels
are same as in to the previous figures, we focus on layer 5 (Figure 15) and layer 7 (Figure 16). Each
column depicts temperature distribution for a selected point in time in the printing process. Again,
the first row consists of the schematic diagram of the print at the selected time with the concerned
section marked with arrows. The second and third rows provide the thermal distributions from the
FEM and SM respectively. The third row depicts the error in the SM. For Figure 15, the first column
corresponds to the time when the fifth layer is fully deposited and in the second column the temperature
distribution is shown when another layer is deposited over it. The seventh layer is half deposited at
the third column and it is apparent from the rise in temperature in the left half of the layer. In the
fourth column, the eighth layer is half deposited. In all cases, there is a good correspondence between
the FEM and the SM and the error is within 1%.
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To collective assert the error of the SM predictions, Figure 17 shows the cumulative variation of NRMS
error in the temperature profile predictions between SM and FEM for the top surface points in the
entire part. The panel (a) depicts the error distribution for the interpolation scenario. Each section
in this figure, denoted by a dashed line, corresponds to a layer of the print and is designated by ‘L’.
Our results demonstrate that the error for all points is less than 2%. The error is smaller in the first
two layers (less than 1%) and it gradually increases till the fifth layer. However, it is still less than
2%. The error reaches its maximum value at layer five and does not increase in the subsequent layers.
The first layer is excluded from both training and testing as it is adjacent to the base and behaves
differently than other layers due to base cooling. We observe similar behavior for the extrapolation
scenario that is summarized in panel (b) of Figure 17. In this scenario, the error stabilizes at layer six
and it is always within 2%. Similarly, we also observe a lower error in the bottom few layers.

(a) Interpolation scenario: Print size 4.0 mm (b) Extrapolation scenario: Print size 5.6 mm

Figure 17: Error in the surrogate model predictions for the top surface nodes in the printed parts for
layers L2-L7 (the second layer to the seventh layer).

We close the results section by discussing the computational cost and gains of SM. Specifically, Table 1
provides the details of the computation time and memory requirements for the SM and their comparison
with the FEM. The first column reports the length of the simulated parts. As discussed earlier, the
width and height of the samples are kept constant at 2.4 mm and the length is varied from 2.0 mm to
6.0 mm at an increment of one road width (0.4 mm). The first three and the last two samples, marked
by red boxes, are extrapolation testing data sets and are not used in the training of the SM. The print
size 4.0 mm, marked by a blue box, is used as the interpolation testing data set. The degrees of freedom
(DoF) reported in the second column corresponds to the number of grid points in the simulation of
FEM.

The time required to obtain a thermal history using SM and FEM is reported in the Execution Time
column. The Extraction Time reported in the table is the time required to extract the thermal profiles
from ABAQUS® object files. The execution time for the FEM increases exponentially with the
DoF (from 2.5 to 35 hrs), as presented in the second column of the table. This is a signature of gradual
deposition and mesh activation. Although various techniques can be used to reduce the computation
cost, the custom models suffer from this computational burden. This is in contrast to the execution
time for SM which is linear with respect to DoF. This is expected, since the SM has capabilities of
determining the thermal behavior of any point solely based on the set of local distance within HIZ and
without coupling it to the behavior of the entire part. The average time required to construct a single

26



temperature profile T(t) by the SM for a single point is 0.036s, which opens the avenues for real-time
predictions, in-situ controls, and process optimization.

The input and output data size required by both FEM and SM is compared in the columns of Data
Size. The input for FEM is the input file (‘.inp’ file) and subroutines required by the software to
perform the analysis. For the SM the reported data size corresponds to the input parameters. Inter-
estingly, the input data required for the FEM and SM are of comparable size. However, the output
storage requirement for the FEM is three orders of magnitude higher than that of the SM. The small
memory and processing requirements of the SM enables it to be implemented in small single-board
computers (e.g. raspberry pi).

The error of the temperature response derived from the SM model is reported in the Average Error
column which is the most important factor determining the merit of the SM. The reported errors
are NRMSE defined in Equation 8. Nevertheless, the recorded mean error is less than 5% as seen
in the Mean column. From the column, we observe that the extrapolation error are larger than for
interpolation scenario, which is expected.

In summary, our SM is systematically evaluated based on its accuracy and execution time. Our SM
predicts the thermal behavior with high accuracy (error<5%) in almost real time. The low storage
requirement is a clear benefit which aids towards its implementation on the CPUs of cheap printers.

Table 1: Time and storage space requirements

Length
(mm)

Degrees
of

freedom

S Execution Time Data size Average
ErrorFEM

(hr)
Extract
T (hr)

SM
(s)

Input (MB) Output
FEM SM FEM(GB) SM(KB) Mean Std

2.0 13125 2.5 1.0 81.5 1.92 0.17 0.71

794.11
KB

1.61 0.77
2.4 15625 3.5 1.5 106.1 2.33 0.23 1.0 1.02 0.38
2.8 18125 5.5 2.0 127.0 2.74 0.28 1.36 0.70 0.21
3.2 20625 7.0 2.5 140.5 3.15 0.33 1.77 - -
3.6 23125 9.5 3.5 164.2 3.56 0.39 2.23 - -
4.0 25625 12.0 5.0 185.8 3.97 0.44 2.75 0.73 0.29
4.4 28125 16.0 6.0 205.9 4.38 0.49 3.32 - -
4.8 30625 19.5 8.0 234.2 4.79 0.55 3.94 - -
5.2 33125 26.0 10.0 251.6 5.20 0.60 4.62 - -
5.6 35625 30.5 12.0 280.8 5.67 0.65 5.35 1.13 0.38
6.0 38125 35.5 14.0 325.9 6.03 0.71 6.14 1.84 0.86

Notes:
Red boxes are extrapolation and the blue box is interpolation data set. The unmarked
data sets are used for training the surrogate model. (view in color)
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5 Conclusions and Future work

In this paper, we have proposed, developed, and tested the SM capable of predicting the thermal
behavior of an example thermally driven additive manufacturing process. We used the FFF process to
showcase our approach. The SM was built using the data from a physics-based model. It predicts the
thermal profiles for the testing data sets with high accuracy (>95%) in a fraction of time (1000 times
faster compared to the physics-based model). The model was created to generate the thermal profiles for
different sizes of the same geometry and was tested for both interpolation and extrapolation scenarios.
In both cases, we observed exceptional accuracy at a low computation cost. The storage space and
computational power required for the ANN-based SM are extremely low compared to a FEM. Although
the SM was built for FFF simulations, the concept can be applied for any thermally driven additive
manufacturing process. Moreover, the approach introduced in this work can be generalized for various
deposition patterns, process parameters (e.g. deposition speed), and different material properties.
However, it would require much larger data sets to be generated for training. Nevertheless, the unique
geometry parameterization (set of distances to the heat sources and sinks), time of deposition (from
gcode), and definition of the HIZ is an important step to minimize the data required for the training
of SM.

The SM paves the way towards achieving a real-time prediction and moves us closed to attain a closed
loop control in the 3D printing paradigm. In the future, our goal is to build an SM for more complex
geometries by introducing more detailed input parameters and using a more diverse range of process
parameters.
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Nomenclature

(x̄, ȳ, z̄) Location of instant heat source m

α Thermal diffusivity m2/s

f̄ A surrogate model represented as a function

ȳ Output of a surrogate model

x Array of input for a simulation

δQ Heat source W/m2/K

κ Radiation coefficient W/m2/K4

λ Conductivity W/m/K

Φ CDF of a normal distribution -

ρ Density kg/m3

Ak Area of influence of the kth cooling surface mm2

Cd Radius of deposition cross-section mm

CP Specific heat J/kg/K

db Distance from the base mm

dkc Distance from the kth cooling surface mm

f Simulation represented as a function

h Heat convection coefficient W/m2/K

hid Relative distance of nearby ith deposition mm

Qd Heat introduced due to deposition of unit length J/m

qsurf Flux through surface W/m2

t, t̄ Time s

T Temperature K

Tb Base temperature K
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tid Relative time of nearby ith deposition s

T∞ Temperature at infinite distance K

Tam Ambient temperature K

Tt Temperature at a point K

Vd Deposition speed cm/s

y Output of a numerical simulation

ABS Acrylonitrile Butadiene Styrene

CF-PLA Carbon Fiber polylactic acid

FEM Finite Element Model

HIZ Heat Influence Zone -

SM Surrogate Model
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Appendix

Process modeling for FFF

In this section, we briefly describe the mathematical formulations that govern the thermal behavior
in an extrusion-based AM process. The critical phenomenon that controls the thermal behavior in
an AM process includes: conduction within the deposited layers and subsequent cooling, convection
and radiation from the free surfaces, the evolution of the free surfaces as the deposition proceeds,
continuous material deposition and associated heat introduction with the additive domain. Moreover,
additional process and system variables affect the thermal behavior of the process, such as the ambient
temperature, layer size, deposition patterns, deposition speed, and deposition temperature.

Modeling of the FFF process has seen limited progress regarding its thermal behavior compared to
the metal printing processes. Yardimci and Güçeri [2], and Li [25] were pioneer researchers to model
the transient heat transfer in FFF. Rodriguez [45] considered the elliptical shape of the filament and
proposed a numerical model that accounts for its effects. In this article, we concentrate on the thermal
behavior of the process and model it using finite element method (FEM).

The thermal behavior within the deposited material can be mathematically formulated as a transient
heat equation:

∂ (ρCpT )

∂t
= ∇ (λ∇T ) (9)

where, T is the temperature, ρ is the density of the deposited material, λ is the thermal conductivity.
The boundary conditions account for the interaction of the printed material with the environment.
The top and side free surfaces of the printed part is exposed to the ambient condition. The bottom of
the part is in direct contact of the heated base of the printer. The cooling effect at the surface is due
to convection and radiation. It is modeled as a following boundary condition (BC), and it is applied
on free outer surfaces of the printed part:

Qsurf = h(T − Tam) + κ(T 4 − T 4
∞) (10)

where, h is the heat convection coefficient of the material at the ambient temperature, Tam is the
printing chamber temperature during the print, T∞ is the reference temperature at an infinite distance
for radiation. In the process of FFF, the ambient temperature is assumed to be minutely affected by
the deposition and hence, T∞ = Tam. Another set of boundary conditions correspond to the heating
through the base is modeled as a Dirichlet boundary condition. The base is assumed to be at a
constant temperature of Tb. The deposition temperature (Td) is modeled as the initial condition for
the deposited material.

There are two main complexities involved in solving the mathematical model:

1. Evolving boundary and surface tracking: The printing process continuously increases the size of
the domain and changes the location of free surfaces. To apply the BCs, tracking the surface at
every instance of time is essential.
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Table 2: Simulation details
M
at
er
ia
l

pr
op

er
ti
es

Conduction coefficient (λ) 0.17 W/m/K
Emissivity for air (κ) 0.90

Convection coefficient (h) 21 W/m2/K
Density (ρ) 1050 kg/m3

Specific heat (CP ) 2020 J/kg/K

P
ro
ce
ss

pa
ra
m
et
er
s Layer thickness 0.0002 m

Road width 0.0004 m
Ambient temperature (Tam) 303.15 K

Base temperature (Tb) 358.15 K
Print speed (ν) 0.03 m/s

M
es
h

de
ta
ils Element size 0.0001× 0.0001× 0.0001 m

Element type 8 node linear thermal brick element(DC3D8)
Integration Full integration

D
ep

os
it
io
n

de
ta
ils

Activation length 0.0004 m
Initial Condition (Td) 503.15 K (Temperature)
Activation set size 0.0004× 0.0001× 0.0002 m

2. Moving heat source and deposition: The material is deposited at a high temperature and, due
to continuous deposition, it behaves as a continuously moving heat source. Therefore, the heat
source needs to be traced at every time interval.

The governing equations eqs. (9) and (10) are evaluated in ABAQUS® – a commercial software based
on the finite element method [18, 3, 43, 44, 51]. Although ABAQUS® is used to solve the governing
equations in FEM, the mesh of the model is created using an in-house code. The continuous depo-
sition of the physical process is modeled as discrete depositions in small time intervals. The mesh is
numbered to facilitate the gradual activation of these depositions that follows the printing path. The
discrete depositions are implemented as groups of elements (also known as sets) that constitute the
deposition units. As the printing proceeds, new elements sets are added to the mesh with ‘precondition’
temperature matching deposition temperature, Td. Moreover, the boundary conditions are applied on
the outer free surfaces of the deposition set. For the entire part, the bottom surface is subjected to
constant temperature Tb. The side and top surfaces of the entire print have applied external convection
and radiation fluxes given by equation 10.

The deposited roads have a small cross-section (0.16 mm2) that is discretized into eight elements with
the size of the element 0.001 mm3. With such discretization, the mesh for a print of a 1000 mm3

results in approximately 1 million degrees of freedom. The details of the material properties and
discretization is given in Table 2. As in any modeling, certain assumptions are made while ensuring that
key phenomena in the layer-by-layer deposition are accounted for. Nevertheless, several assumptions
are taken into account to generate data for training. First of all, the material is assumed to be
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homogeneous and isotropic. Deposited roads are rectangular in cross-section and are in perfect contact.
The properties of the material are assumed to be constants. Similarly, the ambient temperature (Tam)
and base temperature (Tb) are considered constant during the process.

Heat Influence Zone (HIZ)

The HIZ determines the size of the neighborhood significantly affected by the heat source. The size
of HIZ can be analytically calculated using the transient solution of a point source on a semi-infinite
body [35]. The temperature change due to a heat source can be represented as,

dT

dt
=

δQ̇

ρCp [4πα (t− t̄)]3/2
exp

(
−(x− x̄)2 + (y − ȳ)2 + (z − z̄)2

4α (t− t̄)

)
(11)

where, T is the temperature at point (x, y, z) at time t. Coefficient α is the thermal diffusivity defined
as α = λ/ρCP . The location of the instantaneous heat source (δQ̇) at time t is (x̄, ȳ, z̄). The heat
source was introduced in the system at time t̄.

Since the influx (δQ̇) in Equation 11 is linearly related to the increment in temperature (dT/dt),
multiple instances of point heat source can be superposed to get their cumulative effect. The heated
depositions are quantified in terms of introduced heat to get their HIZ. Let us consider a small depo-
sition of size (a, b, c) on a printed part. The deposition can be considered as a volumetric heat source
with initial temperature (Td). Each point in this small deposition can be considered as a point heat
source.

Considering the coordinate system as given in the figure, we get,

dT

dt
=

∫ a2

a1

∫ b2

b1

∫ c2

c1

δQ̇

ρCp [4πα (t− t̄)]3/2
exp

(
−(x− x̄)2 + (y − ȳ)2 + (z − z̄)2

4α (t− t̄)

)
dz̄dȳdx̄ (12)

where, (a1, b1, c1) and (a2, b2, c2) are the coordinates of the two diagonally opposite vertices of the unit
deposition. Simplifying Equation 12 we can get

dT

dt
= γ

∫ a2

a1

exp

(
− (x− x̄)2

4α (t− t̄)

)
dx̄ ·

∫ b2

b1

exp

(
− (y − ȳ)2

4α (t− t̄)

)
dȳ ·

∫ c2

c1

exp

(
− (z − z̄)2

4α (t− t̄)

)
dz̄ (13a)

γ =
δQ̇

ρCp [4πα (t− t̄)]3/2
(13b)

Let us consider a cumulative distribution function (CDF) of a normal distribution,

Φ(a|µ, σ) =
1

σ
√

2π

∫ a

−∞
e−

(g−µ)2

2σ2 dg (14)
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where, g is the random variable, a is a value of random variable at which CDF is being calculated, µ
is the mean and σ is the standard deviation. Lets define g, µ and σ for the present context as:

g = x̄, ȳ or z̄ (15a)

µ = x, y or z (15b)

σ =
√

2α(t− t̄) (15c)

Substituting these definitions in Equation 14 and replacing them in the Equation 13a, we get the
following simplified equation:

dT

dt
=

δQ̇

ρCp
((Φ(a2|x, t)− Φ(a1|x, t)) (Φ(b2|y, t)− Φ(b1|y, t)) (Φ(c2|z, t)− Φ(c1|z, t))) (16)

This equation yields the temperature T at any point due to the uniform heat source.

T (x, y, z, τ) =

∫ τ

0

δQ̇

ρCp
((Φ(a2|x, t)− Φ(a1|x, t)) (Φ(b2|y, t)− Φ(b1|y, t)) (Φ(c2|z, t)− Φ(c1|z, t))) dt

(17)
where Φ is cumulative distribution function of a normal distribution and Tτ (x, y, z) is the temperature
at the point with coordinate(x, y, z) at time τ . The heat source is assumed to be static in Equation 17.
In this case the heat introduced into the system per unit volume is:

δQ = ρCP (Td − Tend) (18)

where, Tend is the final temperature of the system. The deposition is a moving heat source.

Equation 17 is implemented to determine the HIZ in ABS and CF-PLA plastic in Section 3.2. The
HIZ provides a conservative estimate of the neighborhood of interest around any point of the printed
part. To get the estimated HIZ, we deposit 20 roads of length 4 mm and height 0.2 mm on a cuboid
part of 10 mm in height and 4× 4 mm2 in cross-section. The integration is evaluated in small time
steps of 0.01 s till the maximum temperature of the part decreases below 10% of the glass temperature.
The flux from the heated deposition is updated every time step as q̇ = h(T td − T tb ), where T td is the
temperature of the deposited part at time t and T tb is the temperature of the contact surface at the
same time. Thus value of the parameters in Equation 17 becomes as follows:

Parameters Values (m)
(a1, a2) (−0.002, 0.002)
(b1, b2) (−0.002, 0.002)
(c1, c2) (−0.0001, 0.0001)

38


	Introduction
	Unique characteristics of additive manufacturing
	Surrogate model
	Temperature decomposition using gcode
	Feature selection
	Output construction
	Training

	Results
	Data generation
	Training and validation
	Testing

	Conclusions and Future work

